3.15.5 \(\int \frac {x^{10}}{\sqrt {2+x^6}} \, dx\) [1405]

Optimal. Leaf size=394 \[ \frac {1}{8} x^5 \sqrt {2+x^6}-\frac {5 \left (1+\sqrt {3}\right ) x \sqrt {2+x^6}}{8 \left (\sqrt [3]{2}+\left (1+\sqrt {3}\right ) x^2\right )}+\frac {5 \sqrt [4]{3} x \left (\sqrt [3]{2}+x^2\right ) \sqrt {\frac {2^{2/3}-\sqrt [3]{2} x^2+x^4}{\left (\sqrt [3]{2}+\left (1+\sqrt {3}\right ) x^2\right )^2}} E\left (\cos ^{-1}\left (\frac {\sqrt [3]{2}+\left (1-\sqrt {3}\right ) x^2}{\sqrt [3]{2}+\left (1+\sqrt {3}\right ) x^2}\right )|\frac {1}{4} \left (2+\sqrt {3}\right )\right )}{4\ 2^{2/3} \sqrt {\frac {x^2 \left (\sqrt [3]{2}+x^2\right )}{\left (\sqrt [3]{2}+\left (1+\sqrt {3}\right ) x^2\right )^2}} \sqrt {2+x^6}}+\frac {5 \left (1-\sqrt {3}\right ) x \left (\sqrt [3]{2}+x^2\right ) \sqrt {\frac {2^{2/3}-\sqrt [3]{2} x^2+x^4}{\left (\sqrt [3]{2}+\left (1+\sqrt {3}\right ) x^2\right )^2}} F\left (\cos ^{-1}\left (\frac {\sqrt [3]{2}+\left (1-\sqrt {3}\right ) x^2}{\sqrt [3]{2}+\left (1+\sqrt {3}\right ) x^2}\right )|\frac {1}{4} \left (2+\sqrt {3}\right )\right )}{8\ 2^{2/3} \sqrt [4]{3} \sqrt {\frac {x^2 \left (\sqrt [3]{2}+x^2\right )}{\left (\sqrt [3]{2}+\left (1+\sqrt {3}\right ) x^2\right )^2}} \sqrt {2+x^6}} \]

[Out]

1/8*x^5*(x^6+2)^(1/2)-5/8*x*(1+3^(1/2))*(x^6+2)^(1/2)/(2^(1/3)+x^2*(1+3^(1/2)))+5/8*3^(1/4)*x*(2^(1/3)+x^2)*((
2^(1/3)+x^2*(1-3^(1/2)))^2/(2^(1/3)+x^2*(1+3^(1/2)))^2)^(1/2)/(2^(1/3)+x^2*(1-3^(1/2)))*(2^(1/3)+x^2*(1+3^(1/2
)))*EllipticE((1-(2^(1/3)+x^2*(1-3^(1/2)))^2/(2^(1/3)+x^2*(1+3^(1/2)))^2)^(1/2),1/4*6^(1/2)+1/4*2^(1/2))*((2^(
2/3)-2^(1/3)*x^2+x^4)/(2^(1/3)+x^2*(1+3^(1/2)))^2)^(1/2)*2^(1/3)/(x^6+2)^(1/2)/(x^2*(2^(1/3)+x^2)/(2^(1/3)+x^2
*(1+3^(1/2)))^2)^(1/2)+5/48*x*(2^(1/3)+x^2)*((2^(1/3)+x^2*(1-3^(1/2)))^2/(2^(1/3)+x^2*(1+3^(1/2)))^2)^(1/2)/(2
^(1/3)+x^2*(1-3^(1/2)))*(2^(1/3)+x^2*(1+3^(1/2)))*EllipticF((1-(2^(1/3)+x^2*(1-3^(1/2)))^2/(2^(1/3)+x^2*(1+3^(
1/2)))^2)^(1/2),1/4*6^(1/2)+1/4*2^(1/2))*(1-3^(1/2))*((2^(2/3)-2^(1/3)*x^2+x^4)/(2^(1/3)+x^2*(1+3^(1/2)))^2)^(
1/2)*2^(1/3)*3^(3/4)/(x^6+2)^(1/2)/(x^2*(2^(1/3)+x^2)/(2^(1/3)+x^2*(1+3^(1/2)))^2)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.10, antiderivative size = 394, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.308, Rules used = {327, 314, 231, 1895} \begin {gather*} \frac {5 \left (1-\sqrt {3}\right ) \left (x^2+\sqrt [3]{2}\right ) \sqrt {\frac {x^4-\sqrt [3]{2} x^2+2^{2/3}}{\left (\left (1+\sqrt {3}\right ) x^2+\sqrt [3]{2}\right )^2}} x F\left (\text {ArcCos}\left (\frac {\left (1-\sqrt {3}\right ) x^2+\sqrt [3]{2}}{\left (1+\sqrt {3}\right ) x^2+\sqrt [3]{2}}\right )|\frac {1}{4} \left (2+\sqrt {3}\right )\right )}{8\ 2^{2/3} \sqrt [4]{3} \sqrt {\frac {x^2 \left (x^2+\sqrt [3]{2}\right )}{\left (\left (1+\sqrt {3}\right ) x^2+\sqrt [3]{2}\right )^2}} \sqrt {x^6+2}}+\frac {5 \sqrt [4]{3} \left (x^2+\sqrt [3]{2}\right ) \sqrt {\frac {x^4-\sqrt [3]{2} x^2+2^{2/3}}{\left (\left (1+\sqrt {3}\right ) x^2+\sqrt [3]{2}\right )^2}} x E\left (\text {ArcCos}\left (\frac {\left (1-\sqrt {3}\right ) x^2+\sqrt [3]{2}}{\left (1+\sqrt {3}\right ) x^2+\sqrt [3]{2}}\right )|\frac {1}{4} \left (2+\sqrt {3}\right )\right )}{4\ 2^{2/3} \sqrt {\frac {x^2 \left (x^2+\sqrt [3]{2}\right )}{\left (\left (1+\sqrt {3}\right ) x^2+\sqrt [3]{2}\right )^2}} \sqrt {x^6+2}}+\frac {1}{8} \sqrt {x^6+2} x^5-\frac {5 \left (1+\sqrt {3}\right ) \sqrt {x^6+2} x}{8 \left (\left (1+\sqrt {3}\right ) x^2+\sqrt [3]{2}\right )} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[x^10/Sqrt[2 + x^6],x]

[Out]

(x^5*Sqrt[2 + x^6])/8 - (5*(1 + Sqrt[3])*x*Sqrt[2 + x^6])/(8*(2^(1/3) + (1 + Sqrt[3])*x^2)) + (5*3^(1/4)*x*(2^
(1/3) + x^2)*Sqrt[(2^(2/3) - 2^(1/3)*x^2 + x^4)/(2^(1/3) + (1 + Sqrt[3])*x^2)^2]*EllipticE[ArcCos[(2^(1/3) + (
1 - Sqrt[3])*x^2)/(2^(1/3) + (1 + Sqrt[3])*x^2)], (2 + Sqrt[3])/4])/(4*2^(2/3)*Sqrt[(x^2*(2^(1/3) + x^2))/(2^(
1/3) + (1 + Sqrt[3])*x^2)^2]*Sqrt[2 + x^6]) + (5*(1 - Sqrt[3])*x*(2^(1/3) + x^2)*Sqrt[(2^(2/3) - 2^(1/3)*x^2 +
 x^4)/(2^(1/3) + (1 + Sqrt[3])*x^2)^2]*EllipticF[ArcCos[(2^(1/3) + (1 - Sqrt[3])*x^2)/(2^(1/3) + (1 + Sqrt[3])
*x^2)], (2 + Sqrt[3])/4])/(8*2^(2/3)*3^(1/4)*Sqrt[(x^2*(2^(1/3) + x^2))/(2^(1/3) + (1 + Sqrt[3])*x^2)^2]*Sqrt[
2 + x^6])

Rule 231

Int[1/Sqrt[(a_) + (b_.)*(x_)^6], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Simp[x*(s +
 r*x^2)*(Sqrt[(s^2 - r*s*x^2 + r^2*x^4)/(s + (1 + Sqrt[3])*r*x^2)^2]/(2*3^(1/4)*s*Sqrt[a + b*x^6]*Sqrt[r*x^2*(
(s + r*x^2)/(s + (1 + Sqrt[3])*r*x^2)^2)]))*EllipticF[ArcCos[(s + (1 - Sqrt[3])*r*x^2)/(s + (1 + Sqrt[3])*r*x^
2)], (2 + Sqrt[3])/4], x]] /; FreeQ[{a, b}, x]

Rule 314

Int[(x_)^4/Sqrt[(a_) + (b_.)*(x_)^6], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Dist[(
Sqrt[3] - 1)*(s^2/(2*r^2)), Int[1/Sqrt[a + b*x^6], x], x] - Dist[1/(2*r^2), Int[((Sqrt[3] - 1)*s^2 - 2*r^2*x^4
)/Sqrt[a + b*x^6], x], x]] /; FreeQ[{a, b}, x]

Rule 327

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[c^(n - 1)*(c*x)^(m - n + 1)*((a + b*x^n
)^(p + 1)/(b*(m + n*p + 1))), x] - Dist[a*c^n*((m - n + 1)/(b*(m + n*p + 1))), Int[(c*x)^(m - n)*(a + b*x^n)^p
, x], x] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0] && GtQ[m, n - 1] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b,
 c, n, m, p, x]

Rule 1895

Int[((c_) + (d_.)*(x_)^4)/Sqrt[(a_) + (b_.)*(x_)^6], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/
a, 3]]}, Simp[(1 + Sqrt[3])*d*s^3*x*(Sqrt[a + b*x^6]/(2*a*r^2*(s + (1 + Sqrt[3])*r*x^2))), x] - Simp[3^(1/4)*d
*s*x*(s + r*x^2)*(Sqrt[(s^2 - r*s*x^2 + r^2*x^4)/(s + (1 + Sqrt[3])*r*x^2)^2]/(2*r^2*Sqrt[(r*x^2*(s + r*x^2))/
(s + (1 + Sqrt[3])*r*x^2)^2]*Sqrt[a + b*x^6]))*EllipticE[ArcCos[(s + (1 - Sqrt[3])*r*x^2)/(s + (1 + Sqrt[3])*r
*x^2)], (2 + Sqrt[3])/4], x]] /; FreeQ[{a, b, c, d}, x] && EqQ[2*Rt[b/a, 3]^2*c - (1 - Sqrt[3])*d, 0]

Rubi steps

\begin {align*} \int \frac {x^{10}}{\sqrt {2+x^6}} \, dx &=\frac {1}{8} x^5 \sqrt {2+x^6}-\frac {5}{4} \int \frac {x^4}{\sqrt {2+x^6}} \, dx\\ &=\frac {1}{8} x^5 \sqrt {2+x^6}+\frac {5}{8} \int \frac {2^{2/3} \left (-1+\sqrt {3}\right )-2 x^4}{\sqrt {2+x^6}} \, dx+\frac {\left (5 \left (1-\sqrt {3}\right )\right ) \int \frac {1}{\sqrt {2+x^6}} \, dx}{4 \sqrt [3]{2}}\\ &=\frac {1}{8} x^5 \sqrt {2+x^6}-\frac {5 \left (1+\sqrt {3}\right ) x \sqrt {2+x^6}}{8 \left (\sqrt [3]{2}+\left (1+\sqrt {3}\right ) x^2\right )}+\frac {5 \sqrt [4]{3} x \left (\sqrt [3]{2}+x^2\right ) \sqrt {\frac {2^{2/3}-\sqrt [3]{2} x^2+x^4}{\left (\sqrt [3]{2}+\left (1+\sqrt {3}\right ) x^2\right )^2}} E\left (\cos ^{-1}\left (\frac {\sqrt [3]{2}+\left (1-\sqrt {3}\right ) x^2}{\sqrt [3]{2}+\left (1+\sqrt {3}\right ) x^2}\right )|\frac {1}{4} \left (2+\sqrt {3}\right )\right )}{4\ 2^{2/3} \sqrt {\frac {x^2 \left (\sqrt [3]{2}+x^2\right )}{\left (\sqrt [3]{2}+\left (1+\sqrt {3}\right ) x^2\right )^2}} \sqrt {2+x^6}}+\frac {5 \left (1-\sqrt {3}\right ) x \left (\sqrt [3]{2}+x^2\right ) \sqrt {\frac {2^{2/3}-\sqrt [3]{2} x^2+x^4}{\left (\sqrt [3]{2}+\left (1+\sqrt {3}\right ) x^2\right )^2}} F\left (\cos ^{-1}\left (\frac {\sqrt [3]{2}+\left (1-\sqrt {3}\right ) x^2}{\sqrt [3]{2}+\left (1+\sqrt {3}\right ) x^2}\right )|\frac {1}{4} \left (2+\sqrt {3}\right )\right )}{8\ 2^{2/3} \sqrt [4]{3} \sqrt {\frac {x^2 \left (\sqrt [3]{2}+x^2\right )}{\left (\sqrt [3]{2}+\left (1+\sqrt {3}\right ) x^2\right )^2}} \sqrt {2+x^6}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.
time = 10.01, size = 41, normalized size = 0.10 \begin {gather*} \frac {1}{8} x^5 \left (\sqrt {2+x^6}-\sqrt {2} \, _2F_1\left (\frac {1}{2},\frac {5}{6};\frac {11}{6};-\frac {x^6}{2}\right )\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[x^10/Sqrt[2 + x^6],x]

[Out]

(x^5*(Sqrt[2 + x^6] - Sqrt[2]*Hypergeometric2F1[1/2, 5/6, 11/6, -1/2*x^6]))/8

________________________________________________________________________________________

Maple [C] Result contains higher order function than in optimal. Order 5 vs. order 4.
time = 0.20, size = 20, normalized size = 0.05

method result size
meijerg \(\frac {\sqrt {2}\, x^{11} \hypergeom \left (\left [\frac {1}{2}, \frac {11}{6}\right ], \left [\frac {17}{6}\right ], -\frac {x^{6}}{2}\right )}{22}\) \(20\)
risch \(\frac {x^{5} \sqrt {x^{6}+2}}{8}-\frac {\sqrt {2}\, x^{5} \hypergeom \left (\left [\frac {1}{2}, \frac {5}{6}\right ], \left [\frac {11}{6}\right ], -\frac {x^{6}}{2}\right )}{8}\) \(33\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^10/(x^6+2)^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/22*2^(1/2)*x^11*hypergeom([1/2,11/6],[17/6],-1/2*x^6)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^10/(x^6+2)^(1/2),x, algorithm="maxima")

[Out]

integrate(x^10/sqrt(x^6 + 2), x)

________________________________________________________________________________________

Fricas [F]
time = 0.07, size = 13, normalized size = 0.03 \begin {gather*} {\rm integral}\left (\frac {x^{10}}{\sqrt {x^{6} + 2}}, x\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^10/(x^6+2)^(1/2),x, algorithm="fricas")

[Out]

integral(x^10/sqrt(x^6 + 2), x)

________________________________________________________________________________________

Sympy [C] Result contains complex when optimal does not.
time = 0.48, size = 36, normalized size = 0.09 \begin {gather*} \frac {\sqrt {2} x^{11} \Gamma \left (\frac {11}{6}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{2}, \frac {11}{6} \\ \frac {17}{6} \end {matrix}\middle | {\frac {x^{6} e^{i \pi }}{2}} \right )}}{12 \Gamma \left (\frac {17}{6}\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**10/(x**6+2)**(1/2),x)

[Out]

sqrt(2)*x**11*gamma(11/6)*hyper((1/2, 11/6), (17/6,), x**6*exp_polar(I*pi)/2)/(12*gamma(17/6))

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^10/(x^6+2)^(1/2),x, algorithm="giac")

[Out]

integrate(x^10/sqrt(x^6 + 2), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {x^{10}}{\sqrt {x^6+2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^10/(x^6 + 2)^(1/2),x)

[Out]

int(x^10/(x^6 + 2)^(1/2), x)

________________________________________________________________________________________